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NEW METHOD FOR DETERMINING THE CHARACTERISTICS OF 
COMPLEX DYNAMIC SYSTEMS 

L. I. Voronova andYu.V. Krementulo 

ABSTRACT: Description of a new method involving multiple 
integration within a moving interval for determining the order 
of a differential equation for a linear dynamic system to- 
gether with numerical values for the coefficients. It is dem- 
onstrated that additive noise having an average value of zero 
within the interval of integration does not cause errors  in the 
determined coefficients. 

Among the numerous methods of determining the characteristics of systems __. /82* 
from data on their normal operation, there is a class of methods based on 
direct integration of differential equations [l-41. In the present article, we 
present a new method, a method of integration over a sliding interval and we 
examine its application in complicated systems that can be described by linear 
differential equations. Before turning to the exposition of this method, let us 
briefly look at the existing methods in this class [l-41. 

Suppose that a dynamical system (Fig. 1) is described by a linear differen- 
tial equation of the form 

where x(t) is the input signal and y(t) is the output signal of the system. 

Equation (1) can be solved for an arbitrary un- 
known coefficient when we know the remaining ones, 
However, this procedure entails difficulties associ- 
ated with the necessity of differentiating x(t) and y(t). 
Multiple integration of equation (1) from 0 to t enables 

us  to bypass this difficulty but the necessity then arises of determining the initial 
values of the input and output signals x(t) and y(t) and their derivatives. The 
method of multiple integration was applied in [l] to determine the coefficient of 
amplification of a linear system with zero initial conditions. It is quite obvious 
that the method is also suitable for determining an arbitrary number of unknown 
coefficients a 
article [2]. 

Figure 1. 

b.. The extension of the method to this case was done in the i' J 

*Numbers in the margin indicate pagination in the foreign text. 
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In the article [3], a method is proposed for determining the coefficients of /83 - 
the equation 

from recursion formulas obtained by successive integration of equation (2) from 
0 to 00. To obtain the desired coefficients a 
signals x(t) and y(t) when we shift from one state to another, and this puts very 
real restrictions on the applicability of this method. 

we need an expression for the i' 

The article [4] is devoted to the method of determining the coefficients of 
equation (1) by means of the so-called modulating function cp (t) . The modulating 
function is chosen in such a way that it and its first n - 1 derivatives vanish at 
the end-points of the interval [t,, t2]. Termwise multi'plication of equation (1) 

by the modulating function and integration from t to t eliminates the necessity 1 2  
of determining the initial values of x(t) and y(t) and their derivatives. Here, to 
find ai and b., we need to have the function cp (t) and its first n - 1 derivatives. 
This same article takes up the extension of the method to certain types of non- 
linear differential equations and partial differential equations. If we need to 
determine several unknown coefficients, we  can apply integration over different 
(displaced) intervals or we can apply several different modulating functions for 
the same interval. 

J 

Below, we shall consider a method of multiple integration over a sliding 
interval [t - T ,  t], where t is variable time and T is a constant time. 

The Essentials of the Method 

In what follows, we shall assume that the system can be described by equa- 
tion (g.- If we integrate (1) n times from t - T to t, we obtain 

i d  A 

I ~ 

where C r  is the number of combinations of r things that can be taken from a set 

of i things and where y 
integral from t - T to t (these limits of integration being variable) of the function 
of lagging argument (t - r T )  (resp. t - qT)  of order (n - i) (resp. (n - j)). 

1 

/ 84 - (t - qT)) is the definite 
(n - j) 

(t - r T )  (resp. x (n - i) 

A s  one can see from equation (3), the equation does not have initial condi- 
tions; instead, we have functions of lagging argument.* 

*We note that in processing of the data on a digital computing machine, 
functions of lagging argument a re  realized in a very simple way. 
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nth integration 

' a  b C 

Figure 2. 

If we need to determine all the unknown coefficients ai and b. ,  we can apply 
J 

one of the following methods: 

(1) n integrations of equation (1) over n + m + 1 displaced sliding intervals 
(see Fig. 2, a). 

(2) 2n + m integrations over the same sliding interval (see Fig. 2, b), 

(3) n + m + 1 integrations over sliding intervals of varying length (see 
Fig. 2,c). 

We shall consider only the first two methods. 

1. Let us suppose that the width of the two displaced intervals is the same 
and that they a re  abutting. This method yields the following system of equations: 

x (1 - 9T) = 4 n )  (I), 
.......................... 

. . . . . . . . ' . . . . . . . . . . . * . * ~ ~ .  
n i  
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2. After 2n + m integrations of equation (l), we obtain the system 

x (1 - 47) .w(,, (4; . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  
m . 1  

When we solve either the system (4) o r  the system (5), we find the coeffi- 
cients a. and b.. 

1 J 

The Basic Properties of the Method 

The method described enables u s  to determine the order of the differential 
equation of the system, which is expressed by the vanishing of certain coeffi- 
cients of equation (1) determined from the systems (4) o r  (5) i f  the order of the 
a priori equation * of the system that we have chosen is greater than the actual 
order. 

/ 86  - 

Suppose that the system is described as before by equation (1) and that the 
approximating equation is of the form 

where n' > n  and m' >n .  

Let us integrate equation ( 6 )  n' times over the displaced intervals. We then 
obtain a system analogous to (4). W e  use the following notation: 

*In what follows, we shall call this equation the approximating equation. 
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. . . . . . . . . . . . . .  
1 

In this notation, the solution for an arbitrary coefficient a; can be written /87 - 
Aa: 

a , - - p - *  

where 

I . . .  . . . . . . . . . . . . . . . . . . . . .  

~ e.., id*, . e .  e ' .  , 

. . . . . .  
. . . . . . . . .  I 

. . . . . . . . .  . .  I 

I . . . . . . . . . . . . . . . . . . . . . . .  
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Let us  suppose that wearedetermining the coefficient a '  where s > n. Let 
S'  

us examine in greater detail an arbitrary (k + 1)st row of the determinant Aa' 
S 

, *  
&,-.-, d ( s - ~ ) ,  dko, l~r+ i )  ,..at L* , d;i dim* (9) 

and of the general determinant of the system A 
. *  & I;(+t), Iru t , * e * ,  &dm d;i,*.*, dkn* e (10) 

Let us  replace %o with the expression obtained from equation (1) integrated /88 - 
n' times: 

111 I 

or, taking (7) into account, 

l o 0  . iQl 

It is clear from equation (12) that d;to is a linear combination of the re- 
maining terms of the (k + 1)st row, so that Aa' = 0 for n' b s  > n. 

S 

By an analogous procedure, we can show that the determinant A' is nonzero 
in the general case, 

Obviously, this result is also valid for the coefficients b!; that is, b! = 0 
J J 

for m' 2 j > m. 

Thus, 
a; = o for 11' > i > n, 
6; = 0 for in'> > m. (13) 

By applying the same method of proof, we can show that the values of the 
coefficients a; and b! calculated in accordance with formula (8) for 0 \< i 4 n and 
14 j 4 m correspond to the actual coefficients a. and b. of equation (1). Obvi- 
ously, a necessary and sufficient condition for this is that 

J 
1 J 

6 



Suppose that we a re  determining the coefficient a$, where s 6 n. Let us 
look at an arbitrary (k + 1)st row of the determinant Aab 

, 
L o ,  ..., ht(+i), ..., dko, &+I) ,..., L, dk,..., &m*; s,<n (15) 

Let us  replace the free term diz0 in (15) with its value obtained from equa- 
tion (1) after we have integrated this equation nt times (cf. formula (12)) and 
let us subtract from equation (12) the expression n m 

, 1-0 1-1 
1+a 

that is, a linear combination of the terms of the (k -t 1)st row 

2 ar& 3. 2 b i d i t  

m \ 

From formula (17), it is obvious that the element in the (s + 1, k + 1) position 
of the determinant Aa; is equal to the element in the (s + 1, k + 1) position of 
the determinant A? multiplied by as. Taking as outside the determinant b b ,  
we obtain* 

Consequently , 
0 

a, = u s .  

Thus, we arrive at the following conclusion: If the order of the equation 
that we have chosen exceeds the actual order of the system, then application of 
the method of integration over a sliding interval enables us to determine both 
the order of the equation and the values of its coefficients. ** One can show that 
this conclusion remains valid for integration over a single sliding interval (by 
method 2, p. 3). 

Application of the Method for Complicated Systems 

Let us look at a complicated dynamical system having N inputs (xl, . . . , %) 

*Since k is arbitrary, a is a common multiple of the entire sth column. 
S 

**By applying the same method of proof, we can obtain an analogous result 
for the methods considered in [ l ,  2 and 41. 
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and M outputs (yl, .... yM) (see Figure 

object). 
find-the coe-fficients%f N X M diffferen- 

a tial equations. To solve this problem, 
7 we need only follow the usual procedure 

of considering an object with N inputs and 
one output. This is true because, when I 

I we consider each of the outputs indepen- 
I dently of the others and determine M 
I times the coefficients of the differential 
I equations of an object with N inputs and 

one output, we can obtain successively I 

the coefficients of all N X M equations. 1 
I 
I 

Thus, suppose that a linear object i 
1 L, - ------ 

is described by the system of differen- 

1 
3, a, where I is a many-dimensional 11 90 

In this case, it is necessary to 'I 
1 

r------- I u,(t) - 

I (Fig. 3, b) with N inputs and one output b 
tial equations 

. . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  

where y (t) is the reaction of the output to the kth input of the system x(t) and 
p is the differentiation operator, 

lk 

Let us suppose also that the output of the object can be represented as  a 
sum of individual reactions (as is shown in Figure 3, b); that is, 

N 

The system of equations (20) can be reduced to a single differential equation. 
Specifically, it follows from (20) that 

mk 
2 b&Jde 
I - 1  (4 (22) Y l k ( t )  = 

$ p d  - 
When we substitute the value y (t) given by equation (22) into equation (2l), lk 

we obtain 
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When we have collected similar terms in equation (23), we arrive at the 
following generalized differential equation, which gives us the relationship be- 
tween the output of the object and its N inputs: 

R 

where 

If we divide both sides of equation (24), for example, by fila, we obtain 
N Qk 

pi (t)  2 2 g k /  P' x k  (t) 4 XI ( 4 ) ;  PIP = O* (25)  
1-0 k=l I-0 

Thus, the system of differential equations (20) is reduced to a form similar 
to (1). 

Application of the method of successive integration over a sliding interval 
to equation (25) does not detail theoretical difficulties. 

Let us now estimate the number of unknown coefficients in the original - /92 
system of equations (20) and in the generalized equation (25). 

In the system (20), the number of coefficients is 

9 
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*This relation can be obtained directly from equation (25) by setting first 
X2 (t), x3 (t), . . . , xN (t) = 0, then x1 (t), x3 (t), . . . , x N (t) = 0, etc. 

= R + N +  Q ,  
L left + right w; = w 

N 
where wleft = N + 2 t t k  = N 4- R is the number of coefficients in the left-hand 

member of equation (20) and wright - - 2 rnk  = Q is the number in the right-hand 
member. 

&-I N 

&-I 

In the generalized equation 

w = w  + W  = N(R + 1) + Q ,  (27) 
g gleft gright 

4 -  - 

= [ nk 4- I] = ( R  i- 1) is the number of coefficients in the left- 
I 
I where w 

%eft I k-1 N 

gright &-I 
hand member of equation (25), and w 

coefficients in the right-hand member of (25). 

= N - I - C Q k  - A is the number of 

The number of coefficients w in the generalized equation (25) is always 
greater than in the initial system since 

g 

w - w = N ( R + l ) + Q - ( R + N + Q ) = R ( N -  1) > O .  (28) g 
Thus, when we apply to equation (25) the method of successive integrations 

over a sliding strip, we obtain a system of linear algebraic equations similar 
to the system (4) or  (5) from which we can determine the unknown coefficients 
cci and h. If we are  interested in getting a more detailed structure of the object, 
that is ,  if we wish to get the transfer furnctions Wll (s), W12 (s), etc., we can 

determine them from the formula* . - ---. ,~ 

3 Bk,d 
(29) i-0 

Wl&) = 
1 S a #  ' 

1.10 

where s is the Laplacian operator. 

When we have found the transfer functions Wlk (s), it is expedient to de- - /93 
termine the zeros and poles in order to cancel the common factors of the 
numerator and denominator of Wlk (s). 

Experimental Part  

Experimental verification of the method has been carried out on a simulat- 
ing installation of the type MNB-1. Integration over a sliding interval was 
carried out according to the following principle: 
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that is, it was replaced by integration from 0 to t. Since the accuracy of a 
block of constant lag of the BPZ type [the letters are  the initial letters of the 
Russian expression for "block of constant lag"] is insufficient for solving the 
problem posed, we obtain the functions of lagging argument at the outputs of the 
identical models IM of the object at the input of which the external signal x(t) is 
fed with lags 7 , 2 7 ,  3 7 ,  etc. A s  input signal x(t), we chose a saltus that can, 
with the aid of the forining link F1 (which includes both linear and nonlinear 
elements), be transformed into another signal of the form desired. The delay 
times a re  achieved with blocks BN of a model with different response thresholds 
at the input of which is fed a common linearly increasing stress U The block 1' 

* I CHagram af at3 eet-up is 8hrJam in pygclre 4, where I is the model of the object, 
the IM's a r e  identical models, FD is a forming device, CD is a computing device 
(which carries out the successive integration and solves the system of equations) 
BN is a block of nonlinearity, and RB is the relay block for turning the solution 
off, 

In the solution of the system of linear algebraic equations for the unknown 
coefficients that we have obtained, we need to carry out the operation of division. 
For normal functioning of the division block, it is necessary that the division 
model exceed 1Ov. Therefore, the scheme includes the relay block RB, which 
turns the solution off if this condition is not satisfied. Below, we show the 
schemes of the set-up and the results of experimental determination of the 
parameters of links of various types. 

A first-order link. The equation of this kind of link is of the form 

, I  a, '9 + y (4) - x (t). 

The desired coefficient is 

(31) 

- / 95 

The scheme of the set-up for realization of (32) is shown in Figure 5.  (BD 
is the division block; the contacts BN in the scheme IM serve to establish the 
initial value of y(t - T ) ,  where y = 10v.) The results of the investigation* are  

shown in Figure 8, a (a 
0 

= 10 sec; al0 = 9 . 8  sec, 7 = 2 . 5  sec). ** l a  

*On those portions of the oscillograms (see Fig. 8) indicated by the dashed 
rectangles, the solution is detached. 

is the value of the coefficient obtained on the model. 
**Here and in what follows, aa is the actual value of the coefficient and a. 
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Figure 5. 

A second-order link. The equation of the link is 

For known al, the coefficient a is determined in accordance with the formula 2 

As we can see from equation (33), to carry out the two integrations over a 
sliding interval, we need to get y(t - T )  and y(t - 27).  

These functions a re  obtained at the outputs of two identical models 1 IM 
and 2 IM at the inputs of which the lagging external influences x(t - T )  and 
x(t - 27) are  applied. The results of the simulation a re  given in Figure 8, b 

= 24.5 sec2; a = 5 sec; 7 = 5 sec). ; "20 1 (a2a = 25 sec 2 

13 



The influence of noises. One can show that if the mean value of an additive 
noise on the interval of integration (t - T ,  t) is equal to 0, then the noise does 
not cause an error  in the determinatjon of the coefficients. This situation is 
illustrated by the results of simulation for the case of a first-order link when 
a sinusoidal noise is added at the output of the link (see Fig. 8, c: ala = 10 sec; 
a 
where n(t) is the noise, and the equation of the link takes the form 

= 9 . 6  sec; T = 2.5 sec). In this case, the output signal z(t) = y(t) + n(t), lo 

To decrease the influence of the noise, let us twice integrate equation (35). * /97 - We then obtain 

. -  
~ ~~ -~ 

~ 

fromwhich it is immediately obvious that the influence of the noise is eliminated 
I 

. I .  

~~~~~ ~ ~ 

*Neglecting the noise n(t). 
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A link with variable coefficient of amplification. An important property of 
over a sliding interval is its applicability to systems with 
the parameters of the system change on@at@tly in 

the interval (t - T , t), then repeated integration over a sliding interval yields 
a system of equations analogous to (4) o r  (5). 

- / 100 

Figure 6 shows the actual law of change of the coefficient of amplification of 
a first-order link (curve 1) and the results of simulation (curve 2). It is clear 
from the drawing that the experimentally determined value of the coefficient of 
amplification lags in time. This lag does not exceed an amount equal to T /2. 

An object with two imputs. An examination has been made of an object 
described by the following system of equations: 

I (3 7) 
~ 

where a, = Q~~~~~~ a, - ail% + Q ~ ~ U I O ,  = %%, 
PI, = %, BlQ = a,,, B i t  -all* Lo = are* 

W e  determine the value of all under the assumption that all the other 
coefficients are  known as follows: 

a a  
021  

a,, = - . 
The coefficient a2 is determined in the same way as the coefficient a2 (see 

formula (34)). The scheme of the set-up is shown in Figure 7. The results of 
the simulation are given in Figure 8, d* (alla = 10 sec; a = 9.6 sec; a21a = 20 

sec; a = a  = 1; T = 5 sec). 10a 20a 

Conclusions 

1. The method of successive integration over a sliding interval enables us  
to determine the order of the differential equation of linear dynamic systems 
and the numerical value of its coefficients. 

*Figure not Reproducible. 
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Figure 8. 

2. The method is applicable for the determination of the characteristics of 
linear systems with variable parameters. 

3. An additive noise the mean value of which over the interval ( t - T , t) 
is equal to 0 does not cause an error  in the determination of the coefficients. 

4. All that has been said can be extended to complicated linear systems 
with several inputs and outputs. 
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